187 research outputs found

    Electrical Detection of Coherent Nuclear Spin Oscillations in Phosphorus-Doped Silicon Using Pulsed ENDOR

    Full text link
    We demonstrate the electrical detection of pulsed X-band Electron Nuclear Double Resonance (ENDOR) in phosphorus-doped silicon at 5\,K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the 31^{31}P nuclear spins, where the 31^{31}P electron spins are detected electrically via spin-dependent transitions through Si/SiO2_2 interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.Comment: 5 pages, 3 figure

    Observation of the single-electron regime in a highly tunable silicon quantum dot

    Full text link
    We report on low-temperature electronic transport measurements of a silicon metal-oxide-semiconductor quantum dot, with independent gate control of electron densities in the leads and the quantum dot island. This architecture allows the dot energy levels to be probed without affecting the electron density in the leads, and vice versa. Appropriate gate biasing enables the dot occupancy to be reduced to the single-electron level, as evidenced by magnetospectroscopy measurements of the ground state of the first two charge transitions. Independent gate control of the electron reservoirs also enables discrimination between excited states of the dot and density of states modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter

    Electrically detected magnetic resonance using radio-frequency reflectometry

    Full text link
    The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of > 300 kHz compared to the kHz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.Comment: 9 pages, 3 figure

    Solid-state magnetic traps and lattices

    Full text link
    We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle's internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one based on surface acoustic waves.Comment: 18 pages, 8 figure

    Electrical detection of spin echoes for phosphorus donors in silicon

    Full text link
    The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO2_2 interface. Using the Carr-Purcell pulse sequence, an echo decay with a time constant of 1.7±0.2μs1.7\pm0.2 \rm{\mu s} is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.Comment: 14 pages, 3 figure

    Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures

    Full text link
    We present the results of electrically-detected magnetic resonance (EDMR) experiments on silicon with ion-implanted phosphorus nanostructures, performed at 5 K. The devices consist of high-dose implanted metallic leads with a square gap, into which Phosphorus is implanted at a non-metallic dose corresponding to 10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure

    Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator.

    Get PDF
    Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge
    • …
    corecore